AUTHOR
TITLE
INSTITUTION
SPONS AGENCY
PUB DATE
CONTRACT
NOTE
EDRS PRICE
DESCRIPTORS

Cooper, Gloria S., Ed.; Magisos, Joel H., Ed. Metrics for Commercial Photography. Ohio State Univ., Columbus. Center for Vocational Eaucation.
Bureau of Occupational and Adult Education (DHEW/OE), Washington, D.C. 76
OEC-0-74-9335
59p.; For related documents see CE 009 736-790
MF-\$0.83 HC-\$3.50 Plus Postage.
Communications; *Curriculum; Instructional Materials;
Learning Activities; Mass Media; Measurement Instruments; *Metric Systen; *Photography; Secondary Education; Teaching Techniques; Units of Study; *Vocational Education

ABSTRACT
Designed to meet the job-related metric measurement needs of commercial photography students, this instructional package is one of six for the communications media occupations cluster, part of a set of 55 packages for metric instruction in different occupations. The package is intended for students who already know the occupational terminology, measurement terms, and tools currently in use. Each of the five units in this instructional package contains performance objectives, learning activities, and supporting information in the form of text, exercises, and tables. In addition, suggested teaching techniques are included. At the back of the package are objective-based evaluation items, a page of answers to the exercises and tests, a list of metric materials needed for the activities, refereaces, and a list of suppliers. The material is designed to accommodate a variety of individual teaching and learning styles, e.g., independent study, small group, or whole-class activity. Exercises are intended to facilitate experiences with measurement instruments, tools, and devices used in this occupation and job-related tasks of estimating and measuring. Unit I, a general introduction to the metric system of measurement, provides informal, hands-on experiences for the students. This unit enables students to become familiar with the basic aetric units, their symbols, and measurement instruments: and to devlop a set of mental references for metric values. The metric system of notation also is explained. Opit 2 provides the metric terms which are used in this occupation and gives experience with occupational measurement tasks. Units 3 focuses on job-related metric equivalents and their relationships. Unit 4 provides experience with recognizing and using metric instruments and tools in occupatisnal measurement tasks. It also provides experience in comparing metric and customary measurement instruments. Unit 5 is designed to give students practice in converting customary and metric measurements, a skill considered useful during the transition to metric in each occupation. (HD)

[^0]\[

$$
\begin{aligned}
& \text { metrics for metrics for } \\
& \text { formetrics for metrics } \\
& \text { metrics for metrics for } \\
& \text { formetrics for metrics } \\
& \text { metrics for metrics for } \\
& \text { for metrics formetrics } \\
& \text { metrics for metrics for } \\
& \text { for metricsmetrics for } \\
& \text { commercial photography } \\
& \text { if } \\
& \text { fos for metrics }
\end{aligned}
$$
\]

TEACHING AND LEARNING

THE METRIC SYSTEM

This metric instructional package was designed to meet job-related metric measurement needs of students, To use this package students should already know the occupational terminology, measurement terms, and tools currently in use. These materials were prepared with the help of experienced vocational teachers, reviewed by experts, tested in classrooms in different parts of the United States, and revised before distribution.

Each of the five units of instruction contains performance objectives, learnine activities, and supporting information in the form of text, exercises, and tables. In addition, surgested teaching techniques are included. At the back of this package are objectivebassed evaluation items, a page of answers to the exeroses and tests, a list of metric materials needed for the activities, references, and a list of suppliers.

Classroom experiences with this instructional package suggest the following teaching.learning strategies:

1. Let the first experiences be informal to make learning the metric system fun.
2. Students learn better when metric units are compared to familiar objects. Everyone should leam to "think metric." Comparing metric units to customary units can be confusing.
3. Students will learn quickly to estimate and measure in metric units by "doing."
4. Students should have experience with measuring activities before getting too much information.
5. Move through the units in an order which emphasizes the sim. plicity of the metric system (e.g., length to area to volume).
6. Teach one concept at a time to avoid overwhelming students with too much material.

Unit 1 is a general introduction to the metric system of measurement which provides informal, hands-on experiences for the students. This unit ennables students to become familiar with the basic metric units, their symbols, and measurement instruments; and to develop a set of mental references for metric values. The metric system of notation also is explained.

Unit 2 provides the metric terms which are used in this occupation and gives experience with occupational measurement tasks.

Unit 3 focuses on jobrrelated metric equivalents and their relationships.

Unit 4 provides experience with recognizing and using metric instruments and tools in occupational measurement tasks. It also provides experience in comparing metric and customary measurement in. struments.

Unit 5 is designed to give students practice in converting custom. ary and metric measurements. Students should leam to "think metric" and avoid comparing customary and metric units. However, skill with conversion tables will be useful during the transition to metric in each occupation.

Using These Instructional Materials

This package was designed to help students leam a core of knowledge about the metric system which they will use on the job. The exercises facilitate experiences with measurement instruments, tools, and devices used in this occupation and job-related tasks of estimating and measuring.

This instructional package also was designed to accommodate a variety of individual teaching and leaming styles. Teachers are encouraged to adapt these materials to their own classes. For example, the information sheets may be given to students for self-study. References may be used as supplemental resources. Exercises may be used in independent study, small groups, or whole-class activities. All of the materials can be expanded by the teacher.

Gloria S Cooper
Joel H. Magisos
Editors
This publication was developsod pursuant 10 contract No. OEC. 0.74 .9935 with the Burasi of Occupational and Adult Education. U.S. Department ol Heath, Educar tion and Welfare. However, the opinions expressed herein do not nectessaily reflect the position or policy of the U.S. Olfice of Education and no official ondorsement by the U.S. Office of Education should be inlerred.

UNIT

1

SUGGESTED TEACHING SEQURNCE

1. These introductory exercises may require two or three teaching periods for all five areas of measurement.
2. Exercises should be followed in the order given to best show the relationship between length, area, and volume.
3. Assemble the metric measuring devices (rules; tapes, scales, thermometers, and measuring containers) and objects to be measured.*
4. Set up the equipment at work stations for use by the whole class or as individualized resource activities.
5. Have the students estimate, measure, and record using Exercises 1 through 5 .
6. Present information on notation and make Table 1 available.
7. Follow up with group discussion of artivities.

* Other school departments may have devices which can be used. Metric suppliers are listed in the reference section.

OBJECTIVES

The student will demonstrate these skills for the Linear, Area, Volume or Caparity, Mass, and Temperature Exercises, using the metric terns and measurement devices listed here.

RULES OF NOTATION

1. Symbols are not capitalized unless the unit is a proper name (mmnot MM).
2. Symbols are not followed by periods (m not m .).
3. Symbols are not followed by an s for plurals (25 g not 25 gs).
4. A space separates the numerals from the unit symbols (4 not 41).
5. Spaces, not commas, are used to separate large numbers into groups of three digits (45271 km not $45,271 \mathrm{~km}$).
6. A zero precedes the decimal point if the number is less than one (0.52 g not .52 g).
7. Litre and metre can be spelled either with an re or ere ending.

METRIC UNITS, SYMBOLS, AND REFERENTS

Quantity	Metric Unit	Symbol	Useeful Referents
Length	millimetre	mm	Thickness of dime or paper clip wire
	centimetre	m	Width of paper clip
	metre	m	Height of door about 2 m
	kilometre	km	12.minute walking distance
Area	square rontimetire	cm^{2}	Area of this space
	square metre	m^{2}	Area of card table top
	hectare	ha	Football field including sidelines and end $20 n e s$
$\begin{aligned} & \text { Volume and } \\ & \text { Capacity } \end{aligned}$	millilitre	ml	Teaspoon is 5 ml
	litre	1	A little more than 1 quart
	cubic centimetre	cm^{3}	Volume of this container
	cubic metre	m^{3}	A little more than a cubic yard
Mass	milligram	mg	Apple seed about 10 mg , grain of salt, 1 mg
	gram	8	Nickel about 5 g
	kilogram	kg	Webster's Collegiate Dictionary
	metric ton (1 000 kilograms)	t	Volkswagen Beetle

METRIC PREFXXSS

Multiples and Submultiples	Prefires	Symbols
$1000000=10^{6}$	mega (meg'a)	M
- $1000=10^{3}$	kill (kil ${ }^{\text {a }}$)	k
$100=10^{2}$	hecto (hĕk' to)	h
$10=10^{1}$	deka (dex' ${ }^{\text {a }}$)	da
Base Unit $1=10^{\circ}$		
$0.1=10^{-1}$	$\operatorname{dec}($ (desesi)	d
$0.01=10^{-2}$	centi (enen'thi) $^{\text {che }}$	c
$0,001=10^{-3}$	milli (mili ${ }^{\text {a }}$)	m
$0.000001=10^{-6}$	micro (mi'kró)	μ

Table 1-b

Table 1-a

LNEAR MEASUREMENT ACTIVITIES

Metre, Centimetre, Millimetre

I. THE METRE (m)

A. DEVELOP A FEELING FOR THE SIZE OF A METRE

1. Pick up one of the metre sticks and stand it up on the - flool. Hold it in place with one hand. Walk around the stick, Now stand next to the stick. With your other hand, touch yourself where the top of the metre stick comes on you.

THAT IS HOW HIGH A NETREIS!

2. Hold one arm out straight at shoulder height. Put the metre stick along this arm until the end hits the end of your fingers. Where is the other end of the metre stick? Touch your. self at that end.

THAT IS HOW LONG A NETRE IS!
3. Choose a partner to stand at yours side. Move apart so that you can put one end of a metre stick in your partner's shoulder and the other end on your shoulder. Look at the space between you.

THAT IS THE WIDTH OR A METRE! \sqrt{v}

B. DEVELOP YOUR ABILITY TO ESTMATE IN METRES

Now you will improve your ability to estimate in metres. Remember where the length and height of a metre was on your body.

For each of the following items:
Estimate the size of the items and write your estimate in the
ESTMMATE column. Measure the size with your metre stick and write the answer in the MEASUREMENT column.

Decide how close your estimate was to the actual measure. If your estimate was within 25% of the actual measure you are a "Metric Marve.."

1. Height of door knob from floor.
2. Height of door.
3. Length of table.
4. Width of table.
5. Length of wall of this room
6. Distance from you to wall.

Exercise 1
(continued on next page)

11. THE CENTIMETRE (cm)

There are 100 centimetres in one metre. If there are 4 metres and 3 centimetres, you write $403 \mathrm{~cm}[(4 \times 100 \mathrm{~cm})+3 \mathrm{~cm}=400 \mathrm{~cm}$ +3 cm).

A. DEVELOP a FEELING FOR THE SIZE OR A CENTIMETRE

1. Hold the metric ruler against the width n © How wide is it? \qquad cm
2. Neasure your thumb from the fir:

3. Use the metric ruler to find the width of your palm.
\qquad cm
4. Measure your index or pointing finger. How long is it? ___cm
5. Measure your wrist with a tape measure. What is the distance around it? \qquad cm
6. Use the tape measure to find your waist size. \qquad cm

B. DEVELOP YOUR ABILITY TO ESTIMATE IN CENTIMETRES

You are now ready to estimate in centimetres. For cach of the following items, follow the procedures used for estimating in metres.

How Close Estimate Measurement Were You?

$$
(\mathrm{cm}) \quad(\mathrm{cm})
$$

1. Length of a paper clip.
2. Diameter (width) of a coin.
3. Width of a postage stamp.
4. Length of a pencil.
5. Width of a sheet of paper.

There are 10 millimetres in one centimettre. When a measurement is 2 centimetres and 5 millimetres, you write $25 \mathrm{~mm}(2 \times 10 \mathrm{~mm})$ $+5 \mathrm{~mm}=20 \mathrm{~mm}+5 \mathrm{~mm}$. There are 1000 mm in 1 m .

A. DEVELOP A FEELING FOR THE SIZE OF A MLLLIMETRE

Using a ruler marked in millimetres, measure:

1. Thickness of a paper clip wire.
mm
2. Thich ness of your fingernail.
\ldots min
3. Widiu of your fingemail.
4. Diameter (width) of a coin.
mmm
5. Diameter (thickness) of your pencil. \qquad mm
6. Width of a postage stamp.
mm

B. DEVELOP YOUR ABILITY TO ESTTMATE IN MLLIMETRES

You are now ready to estimate in millimetres. For each of the following items, follow the procedures used for estimating in metres.

How Close
Estimate Mesurement Were You? (mm) (mm)

1. Thickness of a nickel.
2. Diameter (thickness)
of a bolt.
3. Length of a bolt.
4. Width of a sheet of paper.
5. Thickness of a board or desk top.
6. Thickness of a button.

AREA MEASUREMENT ACTIVITIES

Square Centimetre, Square Metre

WHEN YOU DESCRIBE THE AREA OF SOMETHING, YOU ARE SAYING HOW MANY SQUARES OF A GIVEN SIZE IT TAKES TO COVER THE SURFACE.

I. THE SQUARE CENTIMETRE (cm^{2})

A. DEVELOP A FEELING FOR A SQUARE CENTIMETRE

1. Take a clear plastic use the grid on page 6 .
2. Measure the len and y of one of these small squares with a cen aluer.

THAT IS ONE SQUARE CENTIMETRE!
3. Place your fingernail over the grid. About how many squares does it take to cover your fingernail?

4. Place a coin over the grid. About how many squares does it take to cover the coin? \qquad cm^{2}
5. Place a postage stamp over the grid, About how many squares does it take to cover the postage stamp?
$\ldots \mathrm{cm}^{2}$
6. Place an envelope over the grid. About how many squares does it take to cover the envelope?
\square
7. Measure the length and width of the envelope in centimetres. Length \qquad cm; widh \qquad cm.

Multiply to find the area in square centimetres.
\qquad cm x \qquad $\mathrm{cm}=$ \qquad cm^{2}. How - close are the answers you have in 6 . and in 7 ??
B. DEVELOP YOUR ABILITY TO ESTIMATE IN SQUARE CENTIMETRES

You are now ready to develop y ur ability to estimate in square centimetres.

Remember the size of a square centimetre. For each of the following items, follow the procedures used for estimating in metres.

	How Close
Estimate	Measurumemt
$\left(\mathrm{cm}^{2}\right)$	$\left(\mathrm{cm}^{2}\right)$

1. Index card.
2. Book cover.
3. Photograph.
4. Window pane or tesk top.

II. THE SQuare metre $\left(\mathrm{m}^{2}\right)$

A. DEVELOP A FEELING FOR A SQUARE METRE

1. Tape four metre sticks together to make a square which is one metre long and one metre wide.
2. Hold the square up with one side on the floor to see how big it is.
3. Place the square on the floar in a comer. Step back and look. See how much floor space it covers.
4. Place the square over a table top or desk to see how much space it covers.
5. Place the square against the bottom of a door. See how much of the door it covers, How many squares would it take to cover the door? \qquad m^{2} THIS IS HOW BIG A SQUARE METRE IS!
B. DEVELOP YOUR ABILITY TO ESTIMATE IN SQUARE METRES

You are now ready to estimate in square metres. Follow the procedures used for estimating in metres.

How Close Estimate Measurement Were You? $\left(\mathrm{m}^{2}\right) \quad\left(\mathrm{m}^{2}\right)$

1. Door.
2. Full sheet of newspaper.
3. Chalkboard or bulletin board.
4. Floor.
5. Wall.
6. Wall chart or poster.
7. Side of file cabinet.

VOLUME MEASUREMENT ACTIVITIES

Cubic Centimetre, Litre, Millilitre, Cubic Metre

1. THE CUBIC CENTIMETRE $\left(\mathrm{cm}^{3}\right)$

A. DEVELOP A FEELING FOR THE CUBIC CENTIMETRE

1. Pick up a colored plasticcube. Measure its length, height, and width in centimetres.
THAT IS ONE CUBIC CENTIMETRE!
2. Find the volume of a plastic litre box.
a. Place a ROW of cubes against the bottom of one side (f the box. How many cubes itin the row?
b. Place another ROW of cubes against an adjoining side of the box. How many rows fit inside the box to make one layer of cubes? \qquad How many cubes in each row? \qquad
How many cubese in the layer in the bottom of the box? \qquad
c. Stand a ROW of cubes up against the side of the box. How many LAYERS would fit in the box? \qquad
How many cubes in each layer? \qquad
How many cubes.fit in the box altogether? \qquad
THE VOLUME OF THE BOX IS \qquad CUBIC CENTIMETRES.
d. Measure the length, width, and height of the box in centimetres. Leegth \qquad $\mathrm{cm} ;$ widh \qquad cm ; height \qquad cm . Multiply: these numbers to find the volume in cribic centimetres.

\qquad cm x \qquad cmx cm \qquad m^{3}.
Are the answers the same in ciand d.?

B. DEVELOP YOUR ABILITY TO ESIIMATEANHTRES

You are now ready to develop your ability to estimate in litres. To write two and one-half litres, you wite 2.51, or 2.5 litres. To write one-half litre, you write 0.51 , or 0.5 litre. To write two and three-fourths litres, you write 2.751 , or 2.75 litres.

For each of the following items, use the procedures for estimating in metres.

How Close Estimate Measurement Were You? (I) (I)

1. Medium size freezer container.
2. Large freezer container.
3. Small freezer containet:
4. Bottle o: jug.

III. THE MLLILTTRE (ml)

There are 1000 millilitres in one litre. $1000 \mathrm{ml}=1$ litre. Half a litre is 500 millilitres, or $0.5 \mathrm{llitre}=500 \mathrm{ml}$.

A. DEVELOP A FEELING FOR A MLLLLITRE

1. Examine a centimetre cube. Anything which holds $1 \mathrm{~cm}^{3}$ holds 1 ml .
2. Fill 11 millilitre measuring spoon with rice. Empty the spoon into your hand. Carefully pour the rice into a small pile on a sheet of paper.

THAT IS HOWMUCH ONE MLLLLITRE IS!

3. Fill the 5 ml spoon with rice. Pour the ice into another pile on the sheet of paper.

THAT IS 5 MLLILITRES, OR ONE TEASPOON!

4. Fill the 15 ml spoon with rice. Pour the rice into a third pile on the paper.
THAT IS 15 MLLLLITRES, OR ONE TABLESPOON!

TEMPERATURE MEASUREMENT ACTVVITIES

Degree Celsius

L. DEGREE CEL 1 US $\left({ }^{\circ} \mathrm{C}\right)$

Degree Celsius $\left({ }^{\circ} \mathrm{C}\right)$ is the metric measure for temperature.
A. DEVELOP A FEELING FOR DEGREE CELSIUS

Take a Celsius thermometer. Look at the marks on it.

1. Find 0 degrees.

WATER FREEZES AT ZERO DEGREES CELSUUS $\left(0^{\circ} \mathrm{C}\right)$
WATER BOILS AT 100 DEGREES CELSIUS ($100^{\circ} \mathrm{C}$)
2. Find the temperature of the room. \qquad ${ }^{\circ} \mathrm{C}$. Is the room cool, warm, or about right?
3. Put some hot water from the faucet into a container. Find the temperature. \qquad ${ }^{\circ}$ C. Dip your finger quickly in and out of the water. Is the water very hot, hot, or just warm?
4. Put some cold water in a container with a thermometer. Find the temperature. \qquad ${ }^{\circ} \mathrm{C}$. Dip your finger into the water. Is it cool, cold, or very cold?
5. Bend your arm with the inside of your elbow around the bottom of the thermometer. After about three minutes find the temperature. \qquad ${ }^{\circ} \mathrm{C}$. Your skin temperature is not as high as your body temperature.
NORMAL BODY TEMPERATURE IS 37 DEGREES CELSIUS $\left(37^{\circ} \mathrm{C}\right)$.
A FEVER IS $39^{\circ} \mathrm{C}$.
A-VERY-HICH-FEVERTS. $40^{\circ} \mathrm{C}$.
B. DEVELOP YOUR ABILITY TO ESTIMATE IN DEGREES CELSIUS

For each item, ESTIMATE and wite down how many degrees Celsius you think it is. Then measure and write the MEASURE. MENT. See how close your estimates and actual measurements are.

1. Mix some hot and cold water in a container. Dip your finger into the water.
2. Pour out some of the water. Add some hot water. Dip your finger quickly into the water.
3. Outdoor temperature.
4. Sunny window sill.
5. Mix of ice and water.
6. Temperature at floor.
7. Temperature at ceiling.

Estimate Measurement Were You?
$\left.\left({ }^{\circ} \mathrm{C}\right) \quad{ }^{\circ} \mathrm{C}\right)$

\qquad

UNIT
 2OBJECTIVES

The student will recognize and use the metric tems, units, and symbols used in this occupation.

- Given a metric unit, state its use in this occupation.
- Given a measurement task in this occupa. tion, select the appropriate metric unit and measurement tool.

SUGGESTED TEACHING SEQUENCE

1. Assemble metric measurement tools (rules, tapes, scales, thermometers, etc.) and objects related to this occupation.
2. Discuss with students how to read the tools.
3. Present and have students discuss Information Sheet 2 and Table 2.
4. Have students learn occupationallyrelated metric measurements by completing Exercises 6 and 7 .
5. Test performance by using Section A of "Testing Metric Abilities."

METRICS IN THIS OCCUPATION

Changeover to the metric system is under way. Large corpreatioms are already using metric measurement to compete in the world market. The metre syefem has been used in various parts of industrial and scientific communities for years. Le tethation; passetein
 industries make this metric changeover, employes will neex to tose miletc measurement in job-related takks.

Table 2 lists those metric terms which are most commonly wisto : phis occupation. These terms are epplacing the measurement units used currenty, wats 'inds of iobrelated tasks use measurement? Think of the many different kindes as asuruerments you now make and use Table 2 to discuss the metric terms which replutithen. See if you can add to the list of uses beside each metric term.

METRIC UNITS IOR PHOTOGRAPHY

Quantity	Unit	Symbol	She
Linear	millimeme	imm	Fin mith, priting piates, paper, marging
	centimetre	cm	Sheriflimeat paper; layout, making gheet
Area	Bquare millimetre	mm^{2}	Print peper, retouching, endarging
	square centimetre	cm^{2}	Print papar, enlarcing
	square metre	m^{2}	Studio, dartroom
Mass	gram	8	Maxs (wight) of powders, crystals, postage
	kilogram	kg	Quantity puchase meruse of porders, crystals; supplies;ishipping
Volume/Capacity	millilitre	ml	Water, deohol, mamezrip solution; developing, fixing hupo solutivas; tank and tray capacities*
	litre	1	
	cubic centimetre	cm^{3}	Capseity of solutionitanks, developing tanks andita**
Pressure	kilopascal	kPa	Air preaure and vactum seetiags
Teniperature	depree Celsius	${ }^{0} \mathrm{C}$	Room, darkroom, trorare and solution temper: atures; dry mount preas
Dilutions/Concentrates	millilites per litre	m/n	Mixing liquid to liquid
	grams per litre	B1	Mixing powdeanand crystals to liquids
Application rates	millinims per gquare metre	$\mathrm{m} / \mathrm{m}^{2}$	Estimating materials needed and applying materials
	grams per square metre	$\mathrm{g} / \mathrm{m}^{2}$	

*Either centimetres or:millimeress may be useed, A final decision has not been made by U.S. manufactures. To obtain current information, contact the National mocistrior of Photographic Manufactures.

* Capacities of tanks, trays, and reservoirs can be given either in terms of ligquid capacity (mijlilitres and litres) or in terms of cubic volume (cubic centimetres) of the inside space.

THYEM OUT METRIC LNTS

Te nive you practice with metric s, first stimate the measure.
 Theriactually measure the item and wre down your arswers using the correctmetric symbols. The more yourpactice, the easier it will be.

UNIT

OBJECTIVE

Thestudent will recognize and use met. ric equivalents.

- Givera metric unit, state an equivalent in alagger or smaller metric unit.

SUGGESTED TEACHING SEQUENCE

1. Make available the Information Sheets (3.8) and the associated Exercises (8.14), one at a time.
2. As sconn as you have presented the Information, have the students complete eachexexercise.
3. Chect their answers on the page titled ANSWERS TO EXERCISES AND TESII.
4. Test periormance by using Section B of "Pesting Metric Abilities."

METRIC-METRIC EQUVALENTS

Centimetres and Millimetres

Look at the picture of the nail nexx to the ruler. The nail is 57 mm long. This is $5 \mathrm{~cm}+7 \mathrm{~mm}$ There are 10 mm in each cm, so $1 \mathrm{~mm}=0.1 \mathrm{~cm}$ (one-tenth of a centimetre). This means that $7 \mathrm{~mm}=0.7 \mathrm{~cm}, 5057 \mathrm{~mm}=5 \mathrm{~cm}+7 \mathrm{~mm}$
$=5 \mathrm{~cm}+0.7 \mathrm{~cm}$
$=5.7 \mathrm{~cm}$. Therefore 57 mm is the same as 5.7 cm .
Now measure the paper clip. It is 34 mm . This is the same as $3 \mathrm{~cm} t$ \qquad mm. Since each millimetre is 0.1 cm (one-tenth of a centimetre), $4 \mathrm{~mm}=$ \qquad cm. So, the paper clip is $34 \mathrm{~mm}=3 \mathrm{~cm}+4 \mathrm{~mm}$
$=3 \mathrm{~cm}+0.4 \mathrm{~cm}$
$=3.4 \mathrm{~cm}$. This means that 34 mm is the same as 3.4 cm .
Information Sheet 3

Now you try some.
a) $26 \mathrm{~mm}=$ \qquad cm
e) $132 \mathrm{~mm}=\ldots \mathrm{cm}$
b) $583 \mathrm{~mm}=$ \qquad cm
f) $802 \mathrm{~mm}=$ \qquad
c) $94 \mathrm{~mm}=$ \qquad cm
d) $680 \mathrm{~mm}=$ \qquad cm
g) $1400 \mathrm{~mm}=-\mathrm{mm}$
h) $2307 \mathrm{~mm}=\mathrm{mcm}$

There are 100 centimetres in one metre. Thus,
$2 \mathrm{~m}=2100 \mathrm{~cm}=200 \mathrm{~cm}$,
$3 \mathrm{~m}=3 \times 100 \mathrm{~cm}=300 \mathrm{~cm}$,
$8 \mathrm{~m}=8 \times 100 \mathrm{~cm}=800 \mathrm{~cm}$,
$36 \mathrm{~m}=36 \times 100 \mathrm{~cm}=3600 \mathrm{~cm}$.
There are 1000 millimetres in one metre, so
$2 \mathrm{~m}=2 \mathrm{x} 1000 \mathrm{~mm}=2000 \mathrm{~mm}$
$3 \mathrm{~m}=3 \times 1000 \mathrm{~mm}=3000 \mathrm{~mm}$
$6 \mathrm{~m}=6 \times 1050 \mathrm{~mm}=6000 \mathrm{~mm}$
$24 \mathrm{~m}=24 \times 1000 \mathrm{~mm}=24000 \mathrm{~mm}$.
From your work with decimals you should know that
one-half of a metre can be written 0.5 m (five-tenths of a metre), one-fourth of a centimette can be written 0.25 cm (twenty-five hundredths of a centimetre).

This means that if you want to change three.fourths of a metre to millimetres, you would multiply by 1000 . So

$$
\begin{aligned}
0.75 \mathrm{~m} & =0.75 \times 1000 \mathrm{~mm} \\
& =\frac{75}{100} \times 1000 \mathrm{~mm}
\end{aligned}
$$

$=75 \times \frac{1000}{100} \mathrm{~mm}$
$=75 \times 10 \mathrm{~mm}$
$=750 \mathrm{~mm}$. This means that $0.75 \mathrm{~m}=750 \mathrm{~mm}$.

Information Sheet 4

Fill in the following chart.

metre m	centimetre cm	millimetre mm
1	100	1000
2	200	
3		
9		
		5000
74		
0.8	80	
0.6		600
	2.5	25
		148
	639	

Mililitres to Litres

There are 1000 millilitres in one litre. This means that

> 2000 milililitres is the same as 2 litres,
> 3000 ml is the same a 3 litres,
> 4000 ml is the same as 4 litres,
> 12000 ml is the same as 12 litres.

Since there are 1000 millilitres in each litre, one way to change milli. litres to litres is to divide by 1000 . For example,

$$
\begin{aligned}
& \text { Or } 1000 \mathrm{ml}=\frac{1000}{1000} \text { litre }=2 \text { litre. } \\
& 2000 \mathrm{ml}=\frac{2000}{1000} \text { litres }=2 \text { litres. } \\
& \text { And, as a final example, } \\
& 28000 \mathrm{ml}=\frac{28000}{1000} \text { litres }=28 \text { litres. }
\end{aligned}
$$

What if something holds 500 ml ? How many litres is this? Thisis worked the same way.
$500 \mathrm{ml}=\frac{500}{\frac{5000}{100}}$ litre $=0.5$ litre (fiveetenths of a litte). So 500 ml is the same as one-half (0.5) of a litre.

Change 57 millilitres to litres.
$57 \mathrm{ml}=\frac{57}{1000}$ litre $=0.057$ lite (fifty seven:thousand ths of a litre).

Now you try some. Complete the following chart.

millilitres (mil)	lifres (I)
3000	3
6000	
	8
14000	
300	23
700	0,3
	0,9
250	
	0.47
275	

Litres to Millilitres

What do you do if you need to change litres to millilitres? Remember, there are 1000 millilitres in one litre, or 1 litre $=1000 \mathrm{~m}$.

So,
2 litres $=2 \quad x .1000 \mathrm{ml}=2000 \mathrm{ml}$,
7 litres $=7 \times 1000 \mathrm{ml}=7000 \mathrm{ml}$,
13 . litres $=13 \times 1000 \mathrm{ml}=13000 \mathrm{ml}$,
0.65 litre $=0.65 \times 1000 \mathrm{ml}=650 \mathrm{ml}$.

Information Sheet 6
Now you try some. Complete the following chart.

litres 1	millilites ml
8	8000
5	
46	
	32000
0.4	
0.53	

Kilograms to Grams

To change kilograms to grams, you multiply by 1000 .

$$
\begin{aligned}
4 \mathrm{~kg} & =4 \times 1000 \mathrm{~g}=4000 \mathrm{~g}, \\
23 \mathrm{~kg} & =23 \times 1000 \mathrm{~g}=23000 \mathrm{~g}, \\
0.75 \mathrm{~kg} & =0.75 \times 1000 \mathrm{~g}=750 \mathrm{~g} .
\end{aligned}
$$

Information Sheet 8

Complete the following chart.

kilograms kg	grams g
7	7000
11	
0.4	25000
0.63	
	175

Exercise 13

Changing Units at Work

Some of the things you use in this occupation may be measured in different metric units. Practice changing each of the following to metric equivalents by completing these statements.
a) 3100 cm film magaine holds \qquad
b) 750 ml of solution is \qquad
c) 1250 g of chemical is \qquad 1
d) 3.26 g of acid is \qquad mg
e) 210 mm print paper is \qquad cm
f) 4 litres of developer is \qquad
g) 500 cm of print paper is \longrightarrow
h) 250 ml of solution is \qquad
i) 500 g of hypo crystal is
j) $279 . \mathrm{mm}$ film. ls ._ kg
k) 0.25 litre of iliquid hypo is \quad ml m

1) 1 litre of developer is \qquad ml
m) 28 cm print paper is $\longrightarrow \mathrm{mm}$
n) 10 m roll of tape is cm
2) 0.5 m lamp-to-subject distance is__ cm

4 OBecTVE

The student will recognize and use instruments, tools, and derices for measurement tasks in this occupation.

- Given metric and Customary tools, instruments, or devices, differentiate between metric and Customary.
- Given a measurement task, select and use an appropriate tool, instrument or device.
- Given a metric measurement task, judge the metric quantity within 20% and measure to a 2% accuracy.

SUGGESTED TEACHING SEQUENCE

1. Assemble metric and Customary meanuring tools and devices (rules, scales, ${ }^{\circ} \mathrm{C}$ thermometer, wrenches, light meters, graduates) and display in «eparate groups at leaming stations.
2. Have students examine metric tools and instruments for distinguishing character. istics and compare then with Customary tools and instruments.
3. Have students verbalily describe characteristics.
4. Present or make available Information Sheet 9 .
5. Mix metric and Customary tools or equipment at learning station. Give students Exercises 15 and 16.
6. Test performance by using Section C of "Testing Metric Abilities."

SELECTING AND USNG

METRIC INSTRUMENTS, TOOLS AND DEVICES
Selecting an improper tool or misreading a scale can result in an improper sales form, wasted time and materials, loss of customers, or injury to self or fellow workers. For example, mixing chemicals at $52^{\circ} \mathrm{F}$ instead of $52^{\circ} \mathrm{C}\left(\right.$ about $\left.126^{\circ} \mathrm{F}\right)$ would mean the crystals wouldn't go into the solution properly and film or paper could be ruined in processing. Here are some suggestions:

1. Find out in advance whether Customary or metric units, tools, instruments, of pro. ducts are needed for a given task.
2. Examine the tool or instrument before using it.
3. The metric system is a decimal system. Look for units marked off in whole numbers, tens or tenths, hundreds or hundredths.
4. Look for metric symbols on the tools or gages such as $\mathrm{m}, \mathrm{mm}, \mathrm{kg}, \mathrm{g}, \mathrm{kPa}$, etc.
5. Look for decimal fractions (0.25) or decimal mixed fractions (2.50) rather than common fractions (3/8).
6. Some products may have a special metric symbol such as a block M to show they are metric.
7. Don't force devices which are not fitting properily.
8. Practice selecting and using tools, instruments, and devices.

Practice and prepare to demonstrate your ability to identify, select, and use metric.scaled tools and instruments for the tasks given below. You should be able to use the measurement tools to the appropriate precision of the tool, instrument, or task.

1. Measure and mix developer ingredients.
2. Mis acetic acid in stop bath solution.
3. Position copyboard lights.
4. Expose print paper for 210 mm by 280 mm enlargement.
5. Measure lens to.subject distance for portrait or copyboard work.
6. Placeprocessing trays a safe distance from the safe light.
7. Mount photo for eshibit.
8. Pour the proper amount of developer in a tray to develop one piece of sheet film.
9. Develop roill films, film packs, and small sizes of sheet film in a mall tank.
10. Space two sheets of film on hangers in a tank.
11. Prepare or take from stock the amount of solution needed for small tank developing.
12. Seleèt pre-culd dry mounting material for aphoto to minimize waste.
13. Check temperature of developing or printing solution.

For the tasks below, estimate the methic messurement to within 25% of actual mensurement, and verify the estimation by measuring to the precision of the tool,

	Estimate	Verify
1. Correct temperature of a develor. ing solution		
2. Amount of liquid solution in partly filled bottle or jug		
3. Size of a sheet of contact print- ing papel'		
4. Floor space of a darkroom		
5. Area covered by an enlarger		
lamp 60 cm from copyboard		
6. Temperature of a darkroom		
7. Volume of a quantity of mised		
print developer		
8. Distance between lens and copy-		
board for photographing copy		
9. Aree of a light table		
10. Temperature of a refrigerated		
area for storing supplies		
11. Capacity of a developing tray		
or sink		

METRIC-CUSTOMARY EQUIVALENTS

OBJECTIVE

The student will recognize and use metric and Customary units interchangeably in ordering, selling, and using products and supplies in this occupation.

- Given a Customary (or metric) measurement, find the metric (or Customary) equivalent on a conversion table.
- Given a Customary unit, state the replacement unit.

SEGGITHTED TEACHIVG SEQUENCE

1. Alseamble packages and conainers of materials.
2. Tresent or make avaiable Information Sheet 10 and Table 3.
3. Have students find approximate metricCustomary equivalents by using Dxercise 17.

During the transition period there will be a need for finding equivalents between systems. Conversion tables list calculated equivalents between the two systems. When a close equivalent is needed, a conversion table can be used to find it. Follow these steps:

1. Determine which conversion table is needed.
2. Look up the known number in the appropriate column; if not listed, find numbers you can add together to make the total of the known number.
3. Read the equivalent(s) from the next column.

Table 3 on the next page gives an example of a metric-Customary conversion table witich you can use for practice in finding approx te equivalents. Table 3 can bee:used with Exercise 17, Part 2 and Part 3 .

Below is a table of metric-Customary equivalents which tells you whutithe metric replace: ments for Customaty units.are.* This tawle can be used with Exercise 17, Part 1 and Part 3.Thes symbol \approx means "zearly equal to."

$1 \mathrm{~cm} \approx 0.39 \mathrm{inch}$	$1 \mathrm{inch} \approx 254 \mathrm{~cm}$	$1 \mathrm{ml} \approx 0.2 \mathrm{tsp}$	$1 \mathrm{tsp}=5 \mathrm{ml}$
$1 \mathrm{~m} \approx 3.28$ feet	1 foot 00305 m	$1 \mathrm{ml} \approx 0.07$ tbsp	1 tbsp $\approx 15 \mathrm{ml}$
$1 \mathrm{~m} \approx 1.09$ yards	1 yard $\sim 0 \mathrm{~mm}$	11 33.8 flot	$1 \mathrm{floz} \approx 29: 6 \mathrm{ml}$
$1 \mathrm{~km} \approx 0.62$ mile	$1 \mathrm{mile} \approx 151 \mathrm{~km}$	$11 \sim 4.2 \mathrm{cups}$	1 cup $=237 \mathrm{ml}$
$1 \mathrm{~cm}^{2} \approx 0.16 \mathrm{sq}$ in	1 sq in $\approx 6.5 \mathrm{~cm}^{2}$	$11 \approx 2.1$ pts	$1 \mathrm{pt} \approx 0.471$
$1 \mathrm{~m}^{2} \approx 10.8 \mathrm{sq} \mathrm{ft}$	$1 \mathrm{sq} \mathrm{ft} \approx 0.09 \mathrm{~m}^{2}$	$11 \approx 1.06 \mathrm{qt}$	$1 q t \approx 0.951$
$1 \mathrm{~m}^{2} \approx 1.2 \mathrm{sq}$ yd	1 sq yd $\approx 0.8 \mathrm{~m}^{2}$	$11 \sim 0.26 \mathrm{gal}$	$1 \mathrm{gal} \approx 3.791$
hectare ≈ 2.5 acres	1 acre ≈ 0.4 hectare	$1 \mathrm{gram} \approx 0.03502$	$102 \approx 28.3 \mathrm{~g}$
$1 \mathrm{~cm}^{3} \approx 0.06 \mathrm{cu} \mathrm{in}$	1 cu in $\approx 16.4 \mathrm{~cm}^{3}$	$1 \mathrm{~kg} \sim 2.21 \mathrm{~b}$	$176 \approx 0.45 \mathrm{~kg}$
$1 \mathrm{~m}^{3} \approx 35.3 \mathrm{ca} \mathrm{ft}$	$1 \mathrm{cuft} \approx 0.03 \mathrm{~m}^{3}$	1 metric ton $\approx 2205 \mathrm{lb}$	1 ton $\approx 907.2 \mathrm{~kg}$
$1 \mathrm{~m}^{3} \approx 1.3 \mathrm{cuyd}$	$1 \mathrm{cu} \mathrm{yd} \approx 0.8 \mathrm{~m}^{3}$	$1 \mathrm{kPa} \approx 0.145 \mathrm{psi}$	$1 \mathrm{psi} \approx 6.895 \mathrm{kPa}$

[^1]| GRAM TOOUNC2 | | | | | | OUNCE TO GRAN | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | o, | 1 | \ldots | ! | a. | ¢. | 1 | 0. | 1 |
| 100 | 3.35 | 10 | 0.36 | 1 | 0.04 | 10 | 288 | 1 | 28 |
| 200 | 7:05 | \% | $0: 71$ | 2 | 0.07 | 20 | 667 | 2 | 67 |
| 300 | 10.58 | \% | 1.06 | 8 | 0.11 | 30 | 850 | 3 | 86 |
| 400 | 14.11 | 40 | 1.41 | 4 | 0.14 | 40 | 1134 | 4 | 113 |
| 600 | 17,4 | 50 | 1.76 | 5 | 0.18 | 60 | 1417 | 8 | 142 |
| 600 | 21.16. | 60 | 2.12 | 6 | 0.21 | 60 | 1701 | 6 | 170 |
| 700 | $\mu .10$ | 70 | 2.17 | 7 | 0.26 | 70 | 198 | 1 | 198 |
| 800 | 28.22 | 80 | 2.82 | 8 | 0.28 | 80 | 2288 | 8 | 227 |
| 900 | 31,76 | 90 | 3.17 | | 0.32 | 90 | 2551 | 9 | 255 |
| 1000 | 35,27 | | | | | | | | |

KILOGRAM TO POUND		POUND TO KILOGRAM		MILLLITRESTIO FLUDD OUNCES			FLUDI OUNCES TO MILILITRES		
4 lb	4 ib .	Ib. 48	Ib. kg	oul A.os.	minl 1.02.	Onl Am.	11.ou. ml	4.02. ml	0.02. ml
$10 \quad 220$	$1.2: 2:$	$10 \quad 4.5$	10.5	100, 8.4	10 a	1.08	$10 \quad 298.7$	1.29 .6	180
$20 \quad 44.1$	$2 \quad 4.1$	$20 \quad 9.1$	2.0 .9	2006.8	20.7	$2 \quad 01$	20.391 .6	269.2	2
$30-68.1$	S 6.6	$30 \quad 13.6$	31.4	80010.1	30.10	3.10	$30 \quad 887.2$	388.7	3
$40 \quad 88.2$	188.8	40.18 .1	11.8	40018.4	$40 \quad 1.4$	4.14	$40 \quad 1182.9$	4118.3	4. 12
60110.2	$5 \quad 11.0$	$50 \quad 22.7$	$5 \quad 2.9$	50016.9	501.7		40.1478 .7	1147.9	. 5 . 15
$60 \quad 132.3$	613.2	$60 \quad 27.2$	B 2.7	60080.3	6020	8. 20	$60 \quad 1774.4$	6177.1	6\% 18
-70-154:-	3 t60	77031.8	7 - ${ }^{2}$	70020.7	70-2.4	7.4	$70 \quad 2070.2$	7.207 .0	1. 21
80.178 .4	$8 \quad 17.6$	$80 \quad 36.3$	$8 \quad 3.6$	$1800 \cdot 27.1$	$80 \quad 2.7$	18.27	$80 \quad 2665.9$	8288.6	88
$\begin{array}{r} 90 \quad 198,4 \\ \hline 100 \div 220,5 \\ \hline \end{array}$	919.8	$\begin{array}{\|cc\|} \hline 90 & 40.8 \\ \hline 100 & 45.4 \\ \hline \end{array}$	94.1	90030.4	90. 3.0	$9: 30$	$90 \quad 2661.6$	9666.2	9. 27

ANY WAY YOU WANT IT

1. You are working as a photographer. With the change to metric measurement some of the things you order, sell or use are marked only in metric units. You will need to be familiar with appropriate Customary equivalents in order to communicate with customers and suppliers who use Customary units. To develop your skill use the Table on Information Sheet 10 and give the approximate metric quantity (both number and unit) for each of the following Customary quantities.
Customary Quantity Metric Quantity
a) 1 lb . of hypo crystals
b) 1 qt. of a developer
c) $10 z$ of dry chemical
d) 1 gal of solution
e) 100 feet film magazine
f) 4 in. wide sponge
b) 1 pt . of acetic acid solution
b) 24 in. poster board
i) 50 yd. roll of tape
j) 2 lbs of powdered fizer
k) 3 ft lens-to subject distance
1) 6 At: lamp:to-subject distance
m) 4 oz. of boric acid crystals
n) 16 I. oz. of water
o) 10 yd.roil of dry mounting tissue
2. Use the conversion tables Fom Table 3 to convert the following:
a.) $60 g=$ \qquad 02.
b) $300 \mathrm{~g}=$ \qquad 02.
c) $202=$ \qquad
d) $1602=$ \qquad g
e) $474 \mathrm{~m} /=$ d.02:
f) $64 \mathrm{II} 02 \mathrm{~m}=\mathrm{ml}$
g) $25 \mathrm{ml}=$ \qquad d. 02.
h) $46 \mathrm{~kg}=$ \qquad
i) $38 \mathrm{lb}=$ \qquad
3. Complete the Requisition Form using the items listed. Convert the Customary quantities to metric before filling out the form. Complete all the information (Date, For, Job No., etc.).
Order the following photographic supplies:
a) 6 oz. package of sodium sulitite
b) 1 lb of hypo crystals
c) 50 ft. roll of super 8 mm film
d) 6 sheets of 9 in, by 18 in poster board
e) 10 yd. roll of dry'mounting tissue

SECTION A

1. Ooe killogram is about the mass ofa:
(A] nickel
(B] apple seed
[C] basketball
[D] Volkswagen "Beetle"
(B] 12.000 mm
[C] 12000 mm
[D] 12000 mm
2. A square metre is about the uea of:
[A] this sheet of pape:
[B] a card table top
[C] a bedspread
[D] a postage stamp
3. The mass of fixer in powdered form is measured in:
[A] grams
[B] milililites
[C] pascals.
[D] centimetres
4. A small quantity of developer solution would be measured in:
[A] centimetres
[B] milligrams
[C] kilograms
[D] millilitres
5. The correct way to write twelve thousand millimetree is:
(A) $12,000 \mathrm{mmi}$

SECTION B

7. A print 20 centimetres wide also has a width of:
[A] 200 millimetres
[B] 0.2 millimetre
[C] 2000 millimetres
[D] 2 millimetres
8. A 750 ream package of fixer is the same as:
[A] 0.75 kilogram
[B] 7.5 kilograms
[C] 75 kilograms
[D] 750 kilograms

SECTION C

9. For measuring millilitres you would use a:
[A] scale
[B] thermometer
[C] rule
[D]_messuring. cup.or_raduate
10. Bstimate the length of the line segment below:
(A) 23 grams
[D]-kilogram
[B] 6 centimetres
[C] 40 millimettes
[D] 14 pascals
11. Estimate the length of the line segment below:
-r
(A) 10 millimetres
[B] 4 centimetres
[C] 4 pascals
[D] 23 miligrams

SECTIOND

13. The metric unit for liquid measure
[A] gram
[B] millilitre
[C] litre
[D] hectare
14. The metric unit for mass which replaces the pound is:
15. The equivalent of 250 g is:
[A] 18.002
[B] 16.002 .
[A] cubic centimetre
[B] pascal
[C] Celsius
Use this conreasion table to answer questions 16 and 16 .

8	02		02.
100	3.59	10	0.35
200	7.05	20	0.71
300	10.58	30	1,06
400	14.11	40	1.41
500	17.64	50	1.76
600	21.16	60	2.12
700	24,70	70	2.47
800	28.22	80	2.82
900	31.75	90	3.17
1000	35.27		

which replaces the fuid ounce is:

[C] 8.8102.
[D] 226.002.
16. The equivalent of 180 g is:
10. For measuring Celsius you would
5. The correct way to write twenty prams is:
[A] 20 gms
(B] 20 cm .
IC1 20 g .
(D) 20 B
[A] thermometer
[B] scale …
[C] ruler
[D] measuring cup or graduate
[A] 3.5302.
[B] 6.35 oz
[C] 1.80 oz.
[D] 18.0 oz.

EXERCISES 1 THRU 6

The answers depend on the items used for the activities.

EXERCISE 7

Currently accepted metric units of measurement for each question are shown in Table 2. Standards in each occupation are being established now, so answers may vary.

EXERCISE 8

a)	2.6 cm	e)	13.2 cm
b)	58.3 cm	f)	80.2 cm
c)	9.4 cm	g)	140.0 cm
d)	68.0 cm	h)	230.7 cm

EXERCISES 9 THRU 13
Tables are reproduced in total. Answers are in parentheses,

Exercise 9

metre m	centimetre cm	millimetre mm
1	100	1000
2	200	(2000)
3	(300)	(3000)
9	(900)	(9000)
(0)	(500)	5000
74	(7400)	(74000)
0.8	80	(800)
0.6	(60)	600
(0.025)	2.5	25
(0.148)	(14.8)	148
(6.39)	639	(6390)

Exercise 10

millilitres ml	Litres 1
3000	3
6000	(6)
(8000)	8
(14000)	(14)
(23000)	23
300	0.3
700	(0.7)
(900)	0.9
250	(0.25)
(470)	0.47
275	(0.275)

Exercise 11

litres 1	millilitres ml
8	8000
5	(5000)
46	(46000)
(32)	32000
0.4	(400)
0.53	(530)
(0.48)	480

Exercise 12

grams g	kilograms kg
4000	4
9000	(9)
23000	(23)
(8000)	8
300	(0.3)
275	$0.275)$

Exercise 13

kilograms kg	grams g
7	7000
11	(11000)
(25)	25000
0.4	(400)
0.63	(630)
(0.175)	175

Part 2.
a) 2,1200 f) 1892.7 ml
b) $10,58 \mathrm{oz}$.
g) 0.87 fl .0 oz .
c) 57 g
h) 101.4 lb .
d) 453 g
i) 17.2 kg
e) $15,94 \mathrm{fl} . \mathrm{oz}$.

Exercise 14
$\begin{array}{ll}\text { a) } 31 \mathrm{~m} & \text { i) } 0.5 \mathrm{~kg}\end{array}$
b) 0.75 litre j) 27.9 cm
c) 1.25 kg
k) 250 ml
d) 3260 mg

1) 1000 ml
e) 21 cm
m) 280 mm
f) 4000 ml
n) 1000 cm
g) 5 m
2) 50 cm
h) 0.25 litre

EXERCISES 15 AND 16

The answers depend on the items used for the activities.

EXERCISE 17

Part 1.
a) 0.45 kg
i) 45.5 m
b) 0.95 litre
j) 0.9 kg
c) 28.3 g
k) 0.915 m
d) 3.79 litres

1) 1.83 m
e) 30.5 m
m) 113.2 g
f) 10.16 cm
n) 473.6 ml
g.) 0.471 itre
h) 60.96 cm
6. D
7. D
8. A
9. C
10. A
11. B

Part 3.

a) 169.8 g
b) 0.45 kg
c) 15.25 m
d) 6.22 .86 cm
e) 9.1 m

TESTING METRIC ABLLITIES

1. C
2. D
3. B
4. A
5. A
6. B
7. D
8. A
9. D
10. B

SUGGESTED METRIC TOOLS AND DEVICES NEEDED TO COMPLETE MEASUREMENT TASKS IN EXERCISES 1 THROUCH 5
 $$
\text { (}{ }^{*} \text { Optional) }
$$

LINEAR

Metre Sticks
Rules, 30 cm
Messuring Tapes, 150 cm
*Height Measure
*Metre Tape, 10 m
*Trundle Wheel *Area Mesuruing Grid

VOLUME/CAPACITY
"Nesting Measures, set of 5 , 50 ml .1000 ml Economy Beaker, set of 6, $50 \mathrm{ml} \cdot 1000 \mathrm{ml}$ Metric Spoon, set of 5, $1 \mathrm{mi} \cdot 25 \mathrm{ml}$
Dry Measure, set of 3, 50, $125,250 \mathrm{ml}$
Plastic Litre Box
Centimetre Cubes

Bathroom Scale
*Kilogram Scale
*Platoom Spring Scale
5 kg Capacity
10 kg Capacity
Balance Scale with 8.piece mass eet
*Spring Scale, 6 kg Capacity

TEMPERATURE

Celsius Thermometer

SUGGESTED METRIC TOOLS AND DEVICES NEEDED TO COMPLETE OCCUPATIONAL MEASUREMENTT TASKS

In this occupation the tools needed to complete Exercises 6 , 15 , and 16 are indicated by " K ."
A. Assorted Metric Hardmare-Hes nuts, washers, ccrews, cotter pins, etc.
B. Drill Bitr-Individuad bits or sets, 1 mm to 13 mm range
C. Vemier Caliper-Pocket slide type, 120 mm range
D. Micrometer-Outside micrometer caliper, 0 mm to 25 mm range
E: Feeler Gage-13 blades, $0,05 \mathrm{~mm}$ to 1 mm range
F. Metre Tape-50 or 100 m tape
G. Thermometers-Special purpose types such as a clinical themometer

* H. ${ }^{1}$ Temperature Devices-Indicatoss used for ovens, freezing/ cooling systems, etc.

1. 'Tools-Metric open end or box mrench sets, socket sets, hex key sets
J. Weather Devices-Rain gage, barometer, humididy, wind velocity indicators
K. 'Pressure Gages-Tire pressure, air, oxygen, hydraulic, fuel, etc.
L. 'Velocity-Direct readiug or vane type meter
M. Road Map-State and city road maps

* N. Containers-Buckets, plastic containers, etc,, for mixing and storing liguids

0. Containers-Boxes, buckets, cans, etc., for mixing and storing dry ingredients

Most of the above items may be obtained from local industrial, hardware, and school suppliers. Also, check with your school district's math and science departments and/or local industries for loan of their metic measurement devices.

Measuring devices currently are not available. Substitute devices (i.e., thermometer) may be used to complete the measurement task.

Let's Measure Metric. A Teacher's introduction to Metric Measurement. Divi. sion of Educational Redesign and Renewal, Ohio Department of Education, 65 S, Front Street, Columbur, $0 \mathrm{H} 43215,1975,80$ pages; 81.50 , must include check to state treasurer.
Activity-oriented introduction to the metric system designed for indepen. dent or group inservice education study. Introductory information about metric measurement; reproducible exercises apply metric concepts to common measurement situations; /aboratory activities for individuals or groups. Templafes for making metre tape, litre box, square centimettre grid.

Going Metric with the U.S. Printing Industry, Clive A. Cameron, Graphic Arts Research Center, Rochester Institute of Technology, Rochester, NY 14623, 1972, 175 pagees, $\$ 8.70$, paper.

Book on metric conversion for printing and graphics industry. Chapters on evolution of measurement; commentary on conversions in Britain and Japan; metric systems applications in paper and packaging, typesetting, and machinery and equipment; also has indings of a survey on attitudes of graphic arts firms toward the metric standard. Has celated tables and graphics.

Mcasuring with Meters, or, How to Weigh a Gold Brick with a Meter.Stick. Metrication Institute of America, P.O. Box 236, Northiield, IL 60093, 1974.23 min., 16 mm , sound, color; $\$ 310.00$ purchase, $\$ 31.00$ rental.

Film presents units for length, area, volume and mass, relating each unit to many common objects. Screen overprints show correct use of metric symbols and ease of metric calculations. Relationships among metric mesaures of length, area, volume, and mass are illustrated in interesting and unforgettable ways.

Metric Education, An Annoiated Bibliography for Vocalional", Technical and Adull Education. Product Utilization, The Center for Vocational Education, The Ohio State University, Columbus, OH 43210, 1974, 149 pages; \$10.00.
Comprehensive bibliography of instructional materials, reference materials and resource list for secondary, postsecondary, teacher education, and adult basic education. Instructional materials indexed by 150 ocupational clusters, types of materials, and educational level.

Metric Education, A Position Paper for Vocational, Technical and Adull Edu. sation. Produci Utilization, The Center for Vocational Education, The OhirState Univerity; Columbus; 0 Il-43210;1875;-46 pages; $88: 00$. Paper for teachers, curticulum developers, and administrators in voca. tional, technical and adult education. Covers issues in metric education, the metric system, the impact of metication on vocational and technical education, implications of metric instruction for adult basic education, and curiculum and instructional strategies.

Processing Che micals and Formulas. For Black and White Photography. Eastman
Kodak Company, Professional, Commercial, and Industrial Markets Division, Rochester, NY 14650, 1963, 64 pages, \$1.00.

Professional data book which gives most formulas and temperatures in both U.S. Customary and metric measurements. The unit cubic centimetre (cc) is used insiead of the millilitre (ml) for liquid volume.

METRIC STPPLIERS

Ceitral Inetrument Company, 900 Riverside Drive, New York, NY 10032

Drating rules and sceles for drating, engineering, achitecture, convexsion tables and dides, posters, teaching aids, drafting témplates.

Dick Blick Company, P.0, Box 1267, Galesburg, IL 61401
Instructional quality rules, tapes, metre sticks, cubes, height measures, trunde wheels, measuring cups and spoons, personal scales, gram/kilogram scales, feeler and depth gages, beakers, themometers, kits and other aids.

Ohaus Scale Corporation, 29 Hanover Road, Florham Park, NJ 07932
Instructional quality and precision balances and scales, plastic calipers and stackable gram cubes for beginners.

INFORMATION SOURCES

American Naticnal Metric Council, 1625 Massachusetts Avenue, N.W., Washington, DC 20036

Charts, posters, reports and pamphlets, Metric Reporter newsletter. National metric coordinating council representing industry, govermment, education, professional and trade organizations.

Metric Committee, National Association of Photographic Manufacturess, 600 Mamaroneck Avenue, Harison, NY 10528

Trade association-which is establishing product standards; recommendingpractices for the use of measurement units, and coordinating metric changeover in the industry.

National Bureau of Standards, Office of Information Activities, U.S, Department of Commerce, Waskington, DC 20234

Free and inexpensive metric charts and publications, also lends films and displays.

[^0]: Documents acquired by ERIC include many informal unpublished materials not available from other sources. ERIC makes every effort to obtain the best copy available. Nevertheless, items of marginal reproducibility are often encountered and this affects the quality of the microfiche and hardcopy reproductions ERIC makes available via the ERIC Document Reproduction Service (EDRS). EDRS is not responsible for the quality of the original document. Reproductions supplied by EDRS are the best that can be made from

[^1]: *Adapted from Let's Measure:Mertic, ATeccher's Introduction to Metric Mesasurement: Division of Educational Redesign and Renewal, Ohit Department of Education, 65 S . Front Street, Columbus, OH 43215 ; 1975 ,

